New Antibiotic Molecules: Bypassing the Membrane Barrier of Gram Negative Bacteria Increases the Activity of Peptide Deformylase Inhibitors
نویسندگان
چکیده
BACKGROUND Multi-drug resistant (MDR) bacteria have become a major concern in hospitals worldwide and urgently require the development of new antibacterial molecules. Peptide deformylase is an intracellular target now well-recognized for the design of new antibiotics. The bacterial susceptibility to such a cytoplasmic target primarily depends on the capacity of the compound to reach and accumulate in the cytosol. METHODOLOGY/PRINCIPAL FINDINGS To determine the respective involvement of penetration (influx) and pumping out (efflux) mechanisms to peptide deformylase inhibitors (PDF-I) activity, the potency of various series was determined using various genetic contexts (efflux overproducers or efflux-deleted strains) and membrane permeabilizers. Depending on the structure of the tested molecules, two behaviors could be observed: (i) for actinonin the first PDF-I characterized, the AcrAB efflux system was the main parameter involved in the bacterial susceptibility, and (ii), for the latest PDF-Is such as the derivatives of 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide, the penetration through the membrane was a important limiting step. CONCLUSIONS/SIGNIFICANCE Our results clearly show that the bacterial membrane plays a key role in modulating the antibacterial activity of PDF-Is. The bacterial susceptibility for these new antibacterial molecules can be improved by two unrelated ways in MDR strains: by collapsing the Acr efflux activity or by increasing the uptake rate through the bacterial membrane. The efficiency of the second method is associated with the nature of the compound.
منابع مشابه
New peptide deformylase inhibitors and cooperative interaction: a combination to improve antibacterial activity.
OBJECTIVES Bacterial drug resistance is a worrying public health problem and there is an urgent need for research and development to provide new antibacterial molecules. Peptide deformylase (PDF) is now a well-described intracellular target selected for the design of a new antibiotic group, PDF inhibitors (PDFIs). The initial bacterial susceptibility to an inhibitor of a cytoplasmic target is d...
متن کاملAntibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor.
Peptide deformylase (PDF) is an essential bacterial metalloenzyme which deformylates the N-formylmethionine of newly synthesized polypeptides and as such represents a novel target for antibacterial chemotherapy. To identify novel PDF inhibitors, we screened a metalloenzyme inhibitor library and identified an N-formyl-hydroxylamine derivative, BB-3497, and a related natural hydroxamic acid antib...
متن کاملDocking and Biological Screening of Bezo[A]phenothiazinones as Novel Inhibitors of Bacterial Peptidogloycan Transpeptidase
Rising cases of antibiotic-resistant bacteria is a public health concern. Many approved antibiotics target penicillin-binding proteins example peptidoglycan transpeptidase (PTPase). Due to wide pharmacological activity of phenothiazines, new styryl, aryl, alkynyl, and thiophenyl benzo[a]phenothiazines were synthesized and their inhibitory potency against PTPasein silico and Gram-po...
متن کاملPetra, osiris and molinspiration: A computational bioinformatic platform for experimental in vitro antibacterial activity of annulated uracil derivatives
Annulated pyrano[2,3-d]pyrimidine/pyrano[2,3-d]uracil derivatives were synthesized using aromatic aldehydes, active methylene compounds and barbituric acid in presence of dibutylamine (DBA) catalyst in ethanol as solvent. The different substituents on phenyl ring in the fused pyrano uracil skeleton showed productive influence on its antimicrobial activity against some gram positive and gram neg...
متن کاملDrug forecast – the peptide deformylase inhibitors as antibacterial agents
The relatively rapid development of microbial resistance after the entry of every new antimicrobial into the marketplace necessitates a constant supply of new agents to maintain effective pharmacotherapy. Despite extensive efforts to identify novel lead compounds from molecular targets, only the peptide deformylase inhibitors (PDIs) have shown any real promise, with some advancing to phase I hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009